
Core

War

 By Walid Maalouli - November 2012

Based on the original concept by A. K. Dewdney

TI 99/4A Computer

Introduction

Core War is the brainchild of A. K. Dewdney who first described it in an

issue of Scientific American in 1984.

“ Two computer programs in their native habitat – the memory chips of

a digital computer – stalk each other from address to address.

Sometimes they go scouting for the enemy; sometimes they lay down

a barrage of numeric bombs; sometimes they copy themselves out of

danger or stop to repair damage. This is the game I call Core War. It is

unlike almost all other computer games in that people do not play at

all! The contending programs are written by people, of course, but

once a battle is under way the creator of a program can do nothing but

watch helplessly as the product of hours spent in design and

implementation either lives or dies on the screen. The outcome

depends entirely on which program is hit first in a vulnerable area. “

There have been many enhancements made to this game over the

decade following its introduction, primarily by adding novel

instructions and modifiers, which have made it quite challenging for

the non-programmer. This version is based on the original 1984 version

which should be accessible to most anyone with an interest in this

kind of game.

It has been programmed using TI FORTH.

I hope you will find it enjoyable.

Walid Maalouli

November 2012

Loading and Running Core War

The game will run either on a real TI 99/4A with 32K RAM,

Editor/Assembler cartridge, and 2 disk drives, or using the following

emulators:

 Win994A

 V9t9

 MESS

 PC99

While it can be played on the Classic99 emulator, you will not however

be able to save your battle programs.

You will need to place the TI FORTH disk in drive #1, and the Corewars

disk in drive #2.

Select LOAD AND RUN option from the Editor/Assembler menu and

type DSK1.FORTH followed by a carriage return. TI FORTH will load

and you will be returned to the command prompt.

Type 91 LOAD followed by a carriage return, and Core War will load.

Please note that it will take a couple of minutes for the loading to be

completed, and then the command prompt will come back.

To run Core War at this point, simply type COREWAR followed by a

carriage return. But before doing so, I suggest you read the original

Scientific American article in Appendix A at the end of the manual

then get familiarized with the battle program editor in the next

section.

Battle Program Editor

Core War utilizes the TI FORTH 64 integrated editor for programming

the battle programs. It is a very capable full screen editor.

TI FORTH is based on so-called SCREENS, each containing up to 1024

characters. Only SCREENS 119 to 179 are available for your use, which

should prove more than sufficient. The lower SCREENS contain the

system and program files, and tampering with them will likely lead to

either a system crash or program malfunction.

SCREEN 117 contains two sample battle programs, namely the IMP

and the DWARF which you are free to study and modify at will.

SCREEN 118 has a program called GEMINI, which is a more advanced

battle robot.

To start the editor, type the SCREEN number you wish to edit, a space,

then EDIT followed by a carriage return. For example:

119 EDIT

If that SCREEN appears to be full of garbage characters, it means that

it has not been edited before. Press FCTN-9 to access the command

prompt, type the SCREEN number, a space, then CLEAR followed by a

carriage return. For example:

119 CLEAR

You can at that point return to the editor by typing ED@ followed by a

carriage return at which point the SCREEN would have been cleared.

Editor commands:

 Use the FCTN-S, FCTN-D, FCTN-E and FCTN-X (arrow) keys to

move the cursor around the screen

 FCTN-1: delete character under cursor and shift line left

 FCTN-2: insert a space under the cursor and shift line right

 FCTN-3: delete entire line and scroll screen up. The deleted line

is copied to the clipboard

 CTRL-8: insert a new line at the cursor position and shift the

screen down

 FCTN-8: paste the content of the clipboard at the cursor location

and scroll the screen down

 CTRL-V: tab forward by word

 FCTN-V: tab backwards by word

 FCTN-4: move to the next SCREEN

 FCTN-6: move to the previous SCREEN

 FCTN-5 scrolls the screen to the left

Once done editing a SCREEN, press FCTN-9 to exit to the command

prompt. Again, you can return to the editor by typing ED@.

Battle Program Instruction Set

Core War has 8 executable instructions and a single non-executable

one. The battleground consists of a core memory with 832 addresses

from 0 to 831. This memory is circular, meaning that address 832

becomes address 0. The battle programs can never know their

absolute location within the core memory, and all the instructions

refer only to memory locations relative to the current program’s

instruction pointer. For example, if an instruction refers to address 2,

this means it is targeting an address two memory addresses ahead of

its current instruction location.

This version of Core War works exactly the same as described in the

original article although the program entry syntax differs a bit as noted

below. Program length cannot exceed 100 instructions.

The battle programs need to be entered using the editor in a specific

format so they can be properly interpreted by the game engine.

 Every program needs to start with a : , a space, followed by the

program name which cannot exceed 15 characters. For example,

: TEST

 This should be followed by the word INIT to indicate the

beginning of the battle program.

 ORG should be used immediately prior to the first executable

opcode in your program. This is frequently the first opcode, but

not necessarily.

 All instructions consist of 5 fields, each field separated by at

least one space. The fields are:

o Opcode

o A field addressing mode

o A field operand

o B field addressing mode

o B field operand

 Please note that all the fields should be present even when an

opcode uses only one the fields.

 The valid opcodes are:

o MOV

o ADD

o SUB

o JMP

o JMZ

o JMG

o DJZ

o CMP

o DAT

 The addressing modes are:

o .# immediate

o .! direct

o .@ indirect

 All programs should end with a ;

 A space should separate every element of a program

 Comments can be added by using a (followed by a space, the

comment text, and a closing)

 If a program requires more than one SCREEN, place a - - > at the

bottom of the SCREEN and continue program entry with the

subsequent SCREEN. You may repeatedly do so as needed.

 Only capital letters are recognized by the interpreter.

Program examples:

: IMP

INIT

ORG

MOV .! 0 .! 1 ; (COPIES ITS INSTRUCTION AHEAD ONE ADDRESS)

: DWARF

INIT

ORG

ADD .# 4 .! 3

MOV .! 2 .@ 2

JMP .! -2 .# 0 (NOTE A .# 0 IS PLACED IN FIELD B BUT NOT USED)

DAT .# 0 .# 0 ;

IMPORTANT HINTS:

 Remember that every instruction needs all 5 fields regardless of

whether all the field are used by that instruction. It is good

practice to place a .# 0 in the unused fields. Every field needs to

be separated by at least a space

 Unused fields can be used as handy storage areas

 All instructions target the B Fields ONLY! This is a common

source of error.

 All addresses are relative to the address of the current

instruction being executed.

 With indirect addressing (.@), the contents of the target address

are added to the current instruction pointer to create a new

target address, which contents will in turn be added to the latter

to come up with the final target address. This can be tricky, so

make sure you pay particular attention to this fact.

 Do not forget to place an ORG just before the first instruction

that will be executed when your battle program launches.

Saving and Loading Battle Programs

Once you have finished typing in your program, press FCTN-9 to exit

the editor and return to the command prompt. At this time it is best to

save your program to disk by typing FLUSH followed by a carriage

return. The battle program will be saved on the same disk as the Core

War one and will essentially become part of the program.

But before you can test your program in battle, you need to compile it

by typing the SCREEN number where it resides followed by LOAD. For

example:

118 LOAD

If there are no syntax errors, the command prompt will come back

with ok:0. Otherwise, a ? will be displayed to indicate that an error has

occurred and that you should check your program.

Important: in order not to have multiple copies of your program in

memory when you edit it and load it several times, it is good practice

to do a FORGET followed by your program name before loading the

program SCREEN again. For example:

FORGET TEST

Hint: If you wish for your battle programs to load when the Core War

program is loaded, simply chain link their associated screens with

- - > then execute a FLUSH operation at the command line. Core War is

already linked to SCREEN 118 by default.

Running a Battle

Once you have a completed and loaded a battle program, type at the

command prompt COREWAR followed by a carriage return. A splash

screen will be displayed, and you can press any key to move on.

You will then be prompted for the names of the two battle programs

that will be competing against each other. Type in the appropriate

names followed by a carriage return, and then the program will

initialize the core memory prior to the battle and will prompt you to

press a key when it’s ready.

At that point, the locations of the battle programs will be displayed in

the core memory. Each instruction in the battle programs occupies a

single core memory location, and is color coded as follows:

 MOV : Light Green

 ADD : Dark Blue

 SUB : Light Blue

 JMP : Light Red

 JMZ : Medium Red

 JMG : Dark Red

 DJZ : Dark Yellow

 CMP : Light Yellow

 DAT : White

 Current instruction for Battle Program #1 : Magenta

 Current instruction for Battle Program #2 : Cyan

Once you are ready to start the battle, press a key, and you will note

that the corresponding instruction pointer for each battle program will

move from instruction to instruction per the program’s design. Any

changes to the core memory will be displayed as well. You will

therefore be able to watch the execution of the programs and their

effect on core memory in real time.

The battle program that goes first is chosen randomly at the beginning

of the battle, and will subsequently alternate between the two battle

programs. A battle cycle consists of one instruction execution by each

of the battle programs.

Battle Outcome

If one of the battle programs attempts to execute a DAT statement, it

will automatically lose the battle. If at the end of 1000 cycles there is

no winner, then the battle is considered a draw.

Obviously, your program’s objective is to try to corrupt your opponent’s

program and get it to execute a DAT statement. Easier said than

done…

Good Luck!

Appendix A

COMPUTER RECREATIONS

In the game called Core War hostile programs engage in a

battle of bits.

by A. K. Dewdney

Two computer programs in their native habitat -- the memory chips of a digital

computer -- stalk each other from address to address. Sometimes they go scouting for

the enemy; sometimes they lay down a barrage of numeric bombs; sometimes they

copy themselves out of danger or stop to repair damage. This is the game I call Core

War. It is unlike almost all other computer games in that people do not play at all! The

contending programs are written by people, of course, but once a battle is under way

the creator of a program can do nothing but watch helplessly as the product of hours

spent in design and implementation either lives or dies on the screen. The outcome

depends entirely on which program is hit first in a vulnerable area.

The term Core War originates in an outmoded memory technology. In the 1950's and

1960's the memory system of a computer was built out of thousands of ferromagnetic

cores, or rings, strung on a meshwork of fine wires. Each core could retain the value

of one bit, or binary digit, the fundamental unit of information. Nowadays memory

elements are fabricated on semiconductor chips, but the active part of the memory

system where a program is kept while it is being executed, is still often referred to as

core memory, or simply core.

Battle programs in Core War are written in a specialized language I have named

Redcode, closely related to the class of programming languages called assembly

languages. Most computer programs today are written in a high-level language such

as Pascal, Fortran or BASIC; in these languages a single statement can specify an

entire sequence of machine instructions. Moreover, the statements are easy for the

programmer to read and to understand. For a program to be executed, however, it

must first be translated into "machine language," where each instruction is represented

by a long string of binary digits. Writing a program in this form is tedious at best.

Assembly languages occupy an intermediate position between high-level languages

and machine code. In an assembly-language program each statement generally

corresponds to a single instruction and hence to a particular string of binary digits.

Rather than writing the binary numbers, however, the programmer represents them by

short words or abbreviations called mnemonics (because they are easier to remember

than numbers). The translation into machine code is done by a program called an

assembler.

Comparatively little programming is done in assembly languages because the

resulting programs are longer and harder to understand or modify than their high-level

counterparts. There are some tasks, however, for which an assembly language is ideal.

When a program must occupy as little space as possible or be made to run as fast as

possible, it is generally written in assembly language. Furthermore, some things can

be done in an assembly language that are all but impossible in a high-level language.

For example, an assembly-language program can be made to modify its own

instructions or to move itself to a new position in memory.

Core War was inspired by a story I heard some years ago about a mischievous

programmer at a large corporate research laboratory I shall designate X. The

programmer wrote an assembly-language program called Creeper that would

duplicate itself every time it was run. It could also spread from one computer to

another in the network of the X corporation. The program had no function other than

to perpetuate itself. Before long there were so many copies of Creeper that more

useful programs and data were being crowded out. The growing infestation was not

brought under control until someone thought of fighting fire with fire. A second self-

duplicating program called Reaper was written. Its purpose was to destroy copies of

Creeper until it could find no more and then to destroy itself. Reaper did its job, and

things were soon back to normal at the X lab.

In spite of fairly obvious holes in the story, I believed it, perhaps because I wanted to.

It took some time to track down the real events that lay behind this item of folklore. (I

shall give an account of them below.) For now it is sufficient to note that my desire to

believe rested squarely on the intriguing idea of two programs doing battle in the dark

and noiseless corridors of core.

Last year I decided that even if the story turned out not to be true, something like it

could be made to happen. I set up an initial version of Core War and, assisted by

David Jones, a student in my department at the University of Western Ontario, got it

working. Since then we have developed the game to a fairly interesting level.

Core War has four main components: a memory array of 8,000 addresses, the

assembly language Redcode, an executive program called MARS (an acronym for

Memory Array Redcode Simulator) and the set of contending battle programs. Two

battle programs are entered into the memory array at randomly chosen positions;

neither program knows where the other one is. MARS executes the programs in a

simple version of time-sharing, a technique for allocation the resources of a computer

among numerous users. The two programs take turns: a single instruction of the first

program is executed, then a single instruction of the second, and so on.

What a battle program does during the execution cycles allotted to it is entirely up to

the programmer. The aim, of course, is to destroy the other program by ruining its

instructions. A defensive strategy is also possible: a program might undertake to

repair any damage it has received or to move out of the way when it comes under

attack. The battle ends when MARS comes to an instruction in one of the programs

that cannot be executed. The program with the faulty instruction -- which presumably

is a casualty of war -- is declared the loser.

Much can be learned about a battle program merely by analyzing its actions mentally

or with pencil and paper. To put the program to the test of experience, however, one

needs access to a computer and a version of MARS. The programs could be made to

operate on a personal computer, and Jones and I have prepared brief guidelines for

those who would like to set up a Core War battlefield of their own. (For a copy of the

guidelines send your name and address and $2 for postage and handling to Core War,

Scientific American, 415 Madison Avenue, New York, N.Y., 10017. Delivery may

take a few weeks.)

Before describing Redcode and introducing some simple battle programs, I should say

more about the memory array. Although I have noted that it consists of 8,000

addresses, there is nothing magical about this number; a smaller array would work

quite well. The memory array differs from most computer memories in its circular

configuration; it is a sequence of addresses numbered from 0 to 7999 but it thereupon

rejoins itself, so that address 8000 is equivalent to address 0. MARS always reduces

an address greater than 7999 by taking the remainder after division by 8000. Thus if a

battle program orders a hit at address 9378, MARS interprets the address as 1378.

Redcode is a simplified, special-purpose assembly-style language. It has instructions

to move the contents of one address in memory to another address, to alter the

contents arithmetically and to transfer control forward or backward within a program.

Whereas the output of a real assembler consists of binary codes, the mnemonic form

of a Redcode instruction is translated by MARS into a large decimal integer, which is

then stored in the memory array; each address in the array can hold one such integer.

It is also MARS that interprets the integers as instructions and carries out the indicated

operations.

A list of the elementary Redcode instructions is given in the top illustration on page

19. With each instruction the programmer is required to supply at least one argument,

or value, and most of the instructions take two arguments. For example, in the

instruction JMP -7 the mnemonic JMP (for "jump") is followed by the single

http://corewar.co.uk/vogtmann/redcode.jpg
http://corewar.co.uk/vogtmann/redcode.jpg

argument -7. The instruction tells MARS to transfer control to the memory address

seven places before the current one, that is, seven places before the JMP -7 instruction

itself. If the instruction happened to be at address 3715, execution of the program

would jump back to address 3708.

This method of calculating a position in memory is called relative addressing, and it is

the only method employed in Redcode. There is no way for a battle program to know

its own absolute position in the memory array.

The instruction MOV 3 100 tells MARS to go forward three addresses, copy what it

finds there and deliver it 100 addresses beyond the MOV instruction, overwriting

whatever was there. The arguments in this instruction are given in "direct" mode,

meaning they are to be interpreted as addresses to be acted on directly. Two other

modes are allowed. Preceding an argument with an @ sign makes it "indirect." In the

instruction MOV @3 100 the integer to be delivered to relative address 100 is not the

one found at relative address 3 but rather the one found at the address specified by the

contents of relative address 3. (The bottom illustration on page 19 gives more detail

on the process of indirect addressing.) A # sign makes an argument "immediate," so

that it is treated not as an address but as an integer. The instruction MOV #3 100

causes the integer 3 to be moved to relative address 100.

Most of the other instructions need no further explanation, but the data statement

(DAT) requires some comment. It can serve as a work space to hold information a

program may need to refer to. Strictly speaking, however, it is not an instruction;

indeed, any memory location with a zero in its first decimal position can be regarded

as a DAT statement and as such is not executable. If MARS should be asked to

execute such an "instruction," it will not be able to and will declare that program the

loser.

The decimal integer that encodes a Redcode instruction has several fields, or

functional areas [see middle illustration on page 19]. The first digit represents the

mnemonic itself, and two more digits identify the addressing mode (direct, indirect or

immediate). In addition four digits are set aside for each argument. Negative

arguments are stored in complement form: -1 would be represented as 7999, since in

the circular memory array adding 7999 has the same effect as subtacting 1.

The instructions making up a simple battle program called Dwarf are listed in the

illustration on page 20. Dwarf is a very stupid but very dangerous program that works

its way through the memory array bombarding every fifth address with a zero. Zero is

the integer signifying a nonexecutable data statement, and so a zero dropped into an

enemy program can bring it to a halt.

http://corewar.co.uk/vogtmann/redcode.jpg
http://corewar.co.uk/vogtmann/redcode.jpg
http://corewar.co.uk/vogtmann/dwarf.jpg

Assume that Dwarf occupies absolute addresses 1 through 4. Address 1 initially

contains DAT -1, but execution begins with the next instruction. ADD #5 -1. The

effect of the instruction is to add 5 to the contents of the preceding address, namely

the DAT -1 statement, thereby transforming it into DAT 4. Next Dwarf executes the

instruction at absolute address 3, MOV #0 @-2. Here the integer to be moved is 0,

specified as an immediate value. The target address is calculated indirectly in the

following way. First MARS counts back two addresses from address 3, arriving at

address 1. It then examines the data value there, namely 4, and interprets it as an

address relative to the current position; in other words, it counts four places forward

from address 1 and hence deposits a 0 at address 5.

The final instruction in Dwarf, JMP -2, creates an endless loop. It directs execution

back to absolute address 2, which again increments the DAT statement by 5, making

its new value DAT 9. In the next execution cycle a 0 is therefore delivered to absolute

address 10. Subsequent 0 bombs will fall on addresses 15, 20, 25 and so on. The

program itself is immobile but its artillery threatens the entire array. Eventually Dwarf

works its way around to addresses 7990, 7995 and then 8000. As far as MARS is

concerned, 8000 is equal to 0, and so Dwarf has narrowly avoided committing suicide.

Its next missile again lands on address 5.

It is sobering to realize that no stationary battle program that has more than four

instructions can avoid taking a hit from Dwarf. The opposing program has only three

options: to move about and thereby elude the bombardment, to absorb hits and repair

the damage or to get Dwarf first. To succeed through the last strategy the program

may have to be lucky: it can have no idea where Dwarf is in the memory array, and on

the average it has about 1,600 execution cycles before a hit is received. If the second

program is also a Dwarf, each program wins 30 percent of the time; in 40 percent of

the contests neither program scores a fatal hit.

Before taking up the other two strategies, I should like to introduce a curious one-line

battle program we call Imp. Here it is:

MOV 0 1

Imp is the simplest example of a Redcode program that is able to relocate itself in the

memory array. It copies the contents of relative address 0 (namely MOV 0 1) to

relative address 1, the next address. As the program is executed it moves through the

array at a speed of one address per cycle, leaving behind a trail of MOV 0 1

instructions.

What happens if we pit Imp against Dwarf? The barrage of zeros laid down by Dwarf

moves through the memory array faster than Imp moves, but it does not necessarily

http://corewar.co.uk/vogtmann/ivd.jpg

follow that Dwarf has the advantage. The question is: Will Dwarf hit Imp even if the

barrage does catch up?

If Imp reaches Dwarf first, Imp will in all probability plow right through Dwarf's

code. When Dwarf's JMP -2 instruction transfers execution back two steps, the

instruction found there will be Imp's MOV 0 1. As a result Dwarf will be subverted

and become a second Imp endlessly chasing the first one around the array. Under the

rules of Core War the battle is a draw. (Note that this is the outcome to be expected

"in all probability." Readers are invited to analyze other possibilities and perhaps

discover the bizarre result of one of them.)

Both Imp and Dwarf represent a class of programs that can be characterized as small

and aggressive but not intelligent. At the next level are programs that are larger and

somewhat less aggressive but smart enough to deal with programs in the lower class.

The smarter programs have the ability to dodge an attack by copying themselves out

of trouble. Each such program includes a segment of code somewhat like the one

named Gemini, shown in the lower illustration on page 22. Gemini is not intended to

be a complete battle program. Its only function is to make a copy of itself 100

addresses beyond its present position and then transfer execution to the new copy.

The Gemini program has three main parts. Two data statements at the beginning serve

as pointers; they indicate the next instruction to be copied and its destination. A loop

in the middle of the program does the actual copying, moving each instruction in turn

to an address 100 places beyond its current position. On each transit through the loop

both pointers are incremented by 1, thereby designating a new source and destination

address. A compare instruction (CMP) within the loop tests the value of the first data

statement; when it has been incremented nine times, the entire program has been

copied, and so an exit from the loop is taken. One final adjustment remains to be

made. The destination address is the second statement in the program and it has an

initial value of DAT 99; by the time it is copied, however, it has already been

incremented once, so that in the new version of the program it reads DAT 100. This

transcription error is corrected (by the instruction MOV #99 93) and then execution is

transferred to the new copy.

By modifying Gemini it is possible to create an entire class of battle programs. One of

these, Juggernaut, copies itself 10 locations ahead instead of 100. Like Imp, it tries to

roll through all its opposition. It wins far more often than Imp, however, and leads to

fewer draws, because an overwritten program is less likely to be able to execute

fragments of Juggernaut's code. Bigfoot, another program employing the Gemini

mechanism, makes the interval between copies a large prime number. Bigfoot is hard

to catch and has the same devastating effect on enemy code as Juggernaut does.

http://corewar.co.uk/vogtmann/gemini.jpg

Neither Bigfoot nor Juggernaut is very intelligent. So far we have written only two

battle programs that qualify for the second level of sophistication. They are too long

to reproduce here. One of them, which we call Raidar, maintains two "pickets"

surrounding the program itself [see illustration on page 18]. Each picket consists of

100 consecutive addresses filled with 1's and is separated from the program by a

buffer zone of 100 empty addresses. Raidar divides its time between systematically

attacking distant areas of the memory array and checking its picket addresses. If one

of the pickets is found to be altered, Raidar interprets the change as evidence of an

attack by Dwarf, Imp or some other unintelligent program. Raidar than copies itself to

the other side of the damaged picket, restores it, constructs a new picket on its

unprotected side and resumes normal operation.

In addition to copying itself a battle program can be given the ability to repair itself.

Jones has written a self-repairing program that can survive some attacks, although not

all of them. Called Scanner, it maintains two copies of itself but ordinarily executes

only one of them. The copy that is currently running periodically scans the other copy

to see if any of its instructions have been altered by an attack. Changes are detected by

comparing the two copies, always assuming that the executing copy is correct. If any

bad instructions are found, they are replaced and control is transferred to the other

copy, which then begins to scan the first one.

So far Scanner remains a purely defensive program. It is able to survive attacks by

Dwarf, Imp, Juggernaut and similar slow-moving aggressors -- at least if the attack

comes from the right direction. Jones is currently working on a self-repair program

that keeps three copies of itself.

I am curious to see whether readers can design other kinds of self-repairing programs.

For example, one might think about maintaing two or more copies of a program even

though only one copy is ever executed. The program might include a repair section

that would refer to an extra copy when restoring damaged instructions. The repair

section could even repair itself, but it might still be vulnerable to damage at some

positions. One measure of vulnerability assumes that a single instruction has been hit;

on the average, how many such instruction, if they are hit, ultimately cause the

program to die? By this measure, what is the least vulnerable self-repairing program

that can be written?

Only if reasonably robust programs can be developed will Core War reach the level of

an exciting game, where the emphasis is shifted from defense to offense. Battle

programs will then have to seek out and identify enemy code and mount an intensive

attack wherever it is found.

http://corewar.co.uk/vogtmann/raidar.jpg

I may have given the impression that Redcode and the entire MARS system are fixed.

They are not. In spare moments we have been experimenting with new ideas and are

certainly open to suggestions. Indeed, we have been experimenting so much with new

programs and new features that some battles remain to be fought in our own system.

One idea we have been playing with is to include an extra instruction that would make

self-repair or self-protection a little easier. The instruction PCT A would protect the

instruction at address A from alteration until it is next executed. How much could the

vulnerability of a program be reduced by exploiting an instruction of this kind?

In the guidelines offered above we describe not only the rules of Core War but also

how to set up a memory array and write a MARS system in various high-level

languages. We also suggest how to display the results of a Core War battle. For now

the following rules define the game with enough precision to enable pencil-and-paper

players to begin designing programs:

1. The two battle programs are loaded into the memory array at random positions but

initally are no closer than 1,000 addresses.

2. MARS alternates in executing one instruction from each program until it reaches an

instruction that cannot be executed. The program with the erroneous instruction loses.

3. Programs can be attacked with any available weapon. A "bomb" can be a 0 or any

other integer, including a valid Redcode instruction.

4. A time limit is put on each contest, determined by the speed of the computer. If the

limit is reached and both programs are still running, the contest is a draw.

The story of Creeper and Reaper seems to be based on a compounding of two actual

programs. One program was a computer game called Darwin, invented by M. Douglas

McIlroy of AT&T Bell Laboratories. The other was called Worm and was written by

John F. Shoch of the Xerox Palo Alto Research Center. Both programs are some years

old, allowing ample time for rumors to blossom. (Darwin was described in Software:

Practice and Experience, Volume 2, pages 93-96, 1972. A vague description of what

appears to be the same game is also given in the 1978 edition of Computer Lib.)

In Darwin each player submits a number of assembly-language programs called

organisms, which inhabit core memory along with the organisms of other players. The

organisms created by one player (and thus belonging to the same "species") attempt to

kill those of other species and occupy their space. The winner of the game is the

player whose organisms are most abundant when time is called. McIlroy invented an

unkillable organism, although it won only "a few games." It was immortal but

apparently not very aggressive.

Worm was an experimental program designed to make the fullest use possible of

minicomputers linked in a network at Xerox. Worm was loaded into quiescent

machines by a supervisory program. Its purpose was to take control of the machine

and, in coordination with Worms inhabiting other quiescent machines, run large

applications programs in the resulting multiprocessor system. Worm was designed so

that anyone who wanted to use one of the occupied machines could readily reclaim it

without interfering with the larger job.

One can see elements of both Darwin and Worm in the story of Creeper and Reaper.

In Core War, Reaper has becom reality.

